Peroxisomal lactate dehydrogenase is generated by translational readthrough in mammals
نویسندگان
چکیده
Translational readthrough gives rise to low abundance proteins with C-terminal extensions beyond the stop codon. To identify functional translational readthrough, we estimated the readthrough propensity (RTP) of all stop codon contexts of the human genome by a new regression model in silico, identified a nucleotide consensus motif for high RTP by using this model, and analyzed all readthrough extensions in silico with a new predictor for peroxisomal targeting signal type 1 (PTS1). Lactate dehydrogenase B (LDHB) showed the highest combined RTP and PTS1 probability. Experimentally we show that at least 1.6% of the total cellular LDHB is targeted to the peroxisome by a conserved hidden PTS1. The readthrough-extended lactate dehydrogenase subunit LDHBx can also co-import LDHA, the other LDH subunit, into peroxisomes. Peroxisomal LDH is conserved in mammals and likely contributes to redox equivalent regeneration in peroxisomes.
منابع مشابه
Ribosomal Readthrough at a Short UGA Stop Codon Context Triggers Dual Localization of Metabolic Enzymes in Fungi and Animals
Translation of mRNA into a polypeptide chain is a highly accurate process. Many prokaryotic and eukaryotic viruses, however, use leaky termination of translation to optimize their coding capacity. Although growing evidence indicates the occurrence of ribosomal readthrough also in higher organisms, a biological function for the resulting extended proteins has been elucidated only in very few cas...
متن کاملThe functional readthrough extension of malate dehydrogenase reveals a modification of the genetic code
Translational readthrough gives rise to C-terminally extended proteins, thereby providing the cell with new protein isoforms. These may have different properties from the parental proteins if the extensions contain functional domains. While for most genes amino acid incorporation at the stop codon is far lower than 0.1%, about 4% of malate dehydrogenase (MDH1) is physiologically extended by tra...
متن کاملEvolutionary Dynamics of Abundant Stop Codon Readthrough
Translational stop codon readthrough emerged as a major regulatory mechanism affecting hundreds of genes in animal genomes, based on recent comparative genomics and ribosomal profiling evidence, but its evolutionary properties remain unknown. Here, we leverage comparative genomic evidence across 21 Anopheles mosquitoes to systematically annotate readthrough genes in the malaria vector Anopheles...
متن کاملHeterologous Stop Codon Readthrough of Metazoan Readthrough Candidates in Yeast
Recent analysis of genomic signatures in mammals, flies, and worms indicates that functional translational stop codon readthrough is considerably more abundant in metazoa than previously recognized, but this analysis provides only limited clues about the function or mechanism of readthrough. If an mRNA known to be read through in one species is also read through in another, perhaps these questi...
متن کاملThe DEG15 serine protease cleaves peroxisomal targeting signal 2-containing proteins in Arabidopsis.
Two distinct peroxisomal targeting signals (PTSs), the C-terminal PTS1 and the N-terminal PTS2, are defined. Processing of the PTS2 on protein import is conserved in higher eukaryotes. Recently, candidates for the responsible processing protease were identified from plants (DEG15) and mammals (TYSND1). We demonstrate that plants lacking DEG15 show an expressed phenotype potentially linked to re...
متن کامل